Prediction of failure probability of oil wells

dc.contributor.authorCarvalho, João B.
dc.contributor.authorValença, Dione M.
dc.contributor.authorSinger, Julio M.
dc.date.accessioned2019-05-17T13:18:40Z
dc.date.available2019-05-17T13:18:40Z
dc.date.issued2014
dc.description.resumoWe consider parametric accelerated failure time models with random effects to predict the probability of possibly correlated failures occurring in oil wells. In this context, we first consider empirical Bayes predictors (EBP) based on aWeibull distribution for the failure times and on a Gaussian distribution for the random effects.We also obtain empirical best linear unbiased predictors (EBLUP) using a linear mixed model for which the form of the distribution of the random effects is not specified. We compare both approaches using data obtained from an oil-drilling company and suggest how the results may be employed in designing a preventive maintenance program.pt_BR
dc.identifier.citationCARVALHO, João B.; VALENÇA, Dione M.; SINGER, Julio M. Prediction of failure probability of oil wells. Brazilian Journal of Probability and Statistics , v. 28, n.2 p. 275-287, 2014. Disponível em:< https://projecteuclid.org/euclid.bjps/1396615441>. Acesso em: 06 dez. 2017.pt_BR
dc.identifier.doi10.1214/12-BJPS206
dc.identifier.issn0103-0752
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/27094
dc.languagept_BRpt_BR
dc.publisherBrazilian Statistical Associationpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAccelerated failure time modelspt_BR
dc.subjectCorrelated datapt_BR
dc.subjectEmpirical Bayes predictorspt_BR
dc.subjectEmpirical best linear unbiased predictorspt_BR
dc.subjectRandom effects modelspt_BR
dc.titlePrediction of failure probability of oil wellspt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
PredictionOfFailure_2014.pdf
Tamanho:
206.73 KB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar