A Real-Time meta-heuristic-based safe navigation approach for mobile robots in unknown environments

dc.contributor.advisorFernandes, Marcelo Augusto Costapt_BR
dc.contributor.advisorIDhttps://orcid.org/0000-0001-7536-2506
dc.contributor.advisorLatteshttp://lattes.cnpq.br/3475337353676349
dc.contributor.authorBalza, Micaelpt_BR
dc.contributor.referees1Silva, Sérgio Natan
dc.contributor.referees2Pedrosa, Diogo Pinheiro Fernandespt_BR
dc.contributor.referees3Oliveira, Fábio Fonseca de
dc.date.accessioned2025-05-15T22:06:59Z
dc.date.available2025-05-15T22:06:59Z
dc.date.issued2025-02-19
dc.description.resumoAutonomous navigation in mobile robots is a complex challenge, particularly in unknown and dynamic environments where obstacle avoidance and real-time trajectory optimization are crucial. This work introduces the MetaHeuristic Real-Time Safe Navigation (MHRTSN) strategy, which integrates potential fields with population-based metaheuristics to enhance trajectory planning and navigation efficiency. The proposed strategy was evaluated through a series of simulations in different static and dynamic scenarios, comparing the performance of two versions: MetaHeuristic Real-Time Safe Navigation with Genetic Algorithm (MHRTSN-GA) and MetaHeuristic Real-Time Safe Navigation with Particle Swarm Optimization (MHRTSN-PSO). The evaluation considered key metrics such as displacement, distance traveled, CPU time, and clock time. The results indicate that both versions provide sub-optimal solutions, with MHRTSN-PSO demonstrating superior performance in terms of computational efficiency and convergence when using a small population size. Comparisons with existing approaches in the literature revealed that MHRTSN generated paths of similar length while maintaining a safer distance from obstacles. Thus, the proposed approach offers an efficient and safe solution for autonomous navigation in mobile robots, contributing to advancements in real-world robotic applications.
dc.identifier.citationBALZA, Micael. A Real-Time meta-heuristic-based safe navigation approach for mobile robots in unknown environments. Orientador: Dr. Marcelo Augusto Costa Fernandes. 2025. 73f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2025.
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/63578
dc.language.isoen
dc.publisherUniversidade Federal do Rio Grande do Norte
dc.publisher.countryBRpt_BR
dc.publisher.initialsUFRNpt_BR
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAutonomous navigation
dc.subjectMetaheuristic
dc.subjectMobile robots
dc.subjectPath planning
dc.subjectUnknown environment
dc.subject.cnpqENGENHARIAS::ENGENHARIA ELETRICA
dc.titleA Real-Time meta-heuristic-based safe navigation approach for mobile robots in unknown environments
dc.typemasterThesispt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
RealTimemeta_Balza_2025.pdf
Tamanho:
41.4 MB
Formato:
Adobe Portable Document Format
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.53 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar