Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms

dc.contributor.authorGoto-Silva, Livia
dc.contributor.authorAyad, Nadia M. E.
dc.contributor.authorHerzog, Iasmin L.
dc.contributor.authorSilva, Nilton P.
dc.contributor.authorLamien, Bernard
dc.contributor.authorOrlande, Helcio R. B.
dc.contributor.authorSouza, Annie da Costa
dc.contributor.authorRibeiro, Sidarta Tollendal Gomes
dc.contributor.authorMartins, Michele
dc.contributor.authorDomont, Gilberto B.
dc.contributor.authorJunqueira, Magno
dc.contributor.authorTovar-Moll, Fernanda
dc.contributor.authorRehen, Stevens K.
dc.date.accessioned2019-03-15T13:08:42Z
dc.date.available2019-03-15T13:08:42Z
dc.date.issued2019-03-07
dc.description.resumoBACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.pt_BR
dc.identifier.citationGOTO-SILVA, L. et al. Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Dev Biol., v. 19, n. 1, p. 3, mar. 2019. doi: 10.1186/s12861-019-0183-ypt_BR
dc.identifier.doi10.1186/s12861-019-0183-y
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/26787
dc.languageenpt_BR
dc.subjectOrganoid culturespt_BR
dc.subjectbrain organoidspt_BR
dc.subjectcomputational fluid dynamicspt_BR
dc.titleComputational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platformspt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
SidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf
Tamanho:
2.59 MB
Formato:
Adobe Portable Document Format
Descrição:
SidartaRibeiro_ICe_2019_Computational fluid dynamic
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar