Machine learning nonlocal correlations

dc.contributor.authorSilva, Askery Alexandre Canabarro Barbosa da
dc.contributor.authorBrito, Samuraí Gomes de Aguiar
dc.contributor.authorAraújo, Rafael Chaves Souto
dc.date.accessioned2020-09-20T18:59:37Z
dc.date.available2020-09-20T18:59:37Z
dc.date.issued2019-05-22
dc.description.resumoThe ability to witness nonlocal correlations lies at the core of foundational aspects of quantum mechanics and its application in the processing of information. Commonly, this is achieved via the violation of Bell inequalities. Unfortunately, however, their systematic derivation quickly becomes unfeasible as the scenario of interest grows in complexity. To cope with that, here, we propose a machine learning approach for the detection and quantification of nonlocality. It consists of an ensemble of multilayer perceptrons blended with genetic algorithms achieving a high performance in a number of relevant Bell scenarios. As we show, not only can the machine learn to quantify nonlocality, but discover new kinds of nonlocal correlations inaccessible with other current methods as well. We also apply our framework to distinguish between classical, quantum, and even postquantum correlations. Our results offer a novel method and a proof-of-principle for the relevance of machine learning for understanding nonlocalitypt_BR
dc.identifier.citationCANABARRO, Askery; BRITO, Samuraí; CHAVES, Rafael. Machine Learning Nonlocal Correlations. Physical Review Letters, [s.l.], v. 122, n. 20, p. 200401, 22 maio 2019. Disponível em: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.200401. Acesso em: 03 set. 2020. http://dx.doi.org/10.1103/physrevlett.122.200401.pt_BR
dc.identifier.doi10.1103/physrevlett.122.200401.
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/30124
dc.languageenpt_BR
dc.publisherAmerican Physical Societypt_BR
dc.subjectQuantum mechanicspt_BR
dc.titleMachine learning nonlocal correlationspt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
MachineLearningNonlocal_ARAUJO_2019.pdf
Tamanho:
1.22 MB
Formato:
Adobe Portable Document Format
Descrição:
Artigo
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar