Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle

dc.contributor.authorBlanco, Wilfredo
dc.contributor.authorM. Pereira, Catia
dc.contributor.authorR. Cota, Vinicius
dc.contributor.authorC. Souza, Annie
dc.contributor.authorRennó-Costa, César
dc.contributor.authorSantos, Sharlene
dc.contributor.authorDias, Gabriella
dc.contributor.authorGuerreiro, Ana M. G.
dc.contributor.authorTort, Adriano Bretanha Lopes
dc.contributor.authorD. Neto, Adrião
dc.contributor.authorRibeiro, Sidarta Tollendal Gomes
dc.date.accessioned2015-06-02T13:00:26Z
dc.date.available2015-06-02T13:00:26Z
dc.date.issued2015-05-28
dc.description.abstractSleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic restructuring.pt_BR
dc.description.sponsorship: Support obtained from Financiadora de Estudos e Projetos (http://www.finep.gov.br/) Grant # 01.06.1092.00 to SR; Conselho Nacional de Desenvolvimento Científico e Tecnológico (http:// www.cnpq.br/): Grants 481506/2007-1, 481351/2011- 6 and 306604/2012-4 to SR, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (http://www.capes.gov.br/) and Ciencias sem Fronteiras (http://www.cienciasemfronteiras.gov.br/ web/csf/home) to AT and CRC; Fundação de Amparo à Pesquisa do Rio Grande do Norte (http://wwwfapern.rn.gov.br/): Grant Pronem 003/2011 to SR; Fundação de Amparo à Pesquisa do Estado de São Paulo (http://www.fapesp.br/): Grant #2013/ 07699-0 - Center for Neuromathematics to SR; CMP and VRC supported by post-doctoral fellowships from Fundação de Amparo à Pesquisa do Rio Grande do Norte /CNPq. Additional support obtained from the Federal University of Rio Grande do Norte (www.ufrn. br); Ministry of Science, Technology and Innovation (http://www.mcti.gov.br/); Associação Alberto Santos Dumont de Apoio à Pesquisa (http://natalneuro.com/ associacao/index.asp); Pew Latin American Fellows Program (http://www.pewtrusts.org/en/projects/pewlatin-american-fellows/) to SR; Informatics Department of the Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (http:// portal.ifrn.edu.br/) to WB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptpt_BR
dc.identifier.citationBlanco W, Pereira CM, Cota VR, Souza AC, Rennó-Costa C, Santos S, et al. (2015) Synaptic Homeostasis and Restructuring across the SleepWake Cycle. PLoS Comput Biol 11(5): e1004241. doi:10.1371/journal.pcbi.1004241pt_BR
dc.identifier.issn1553-734X
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/19073
dc.language.isoen_USpt_BR
dc.publisherAldo A Faisal, Imperial College London, UNITED KINGDOMpt_BR
dc.subjectSynaptic Homeostasispt_BR
dc.subjectSleep-Wake Cyclept_BR
dc.titleSynaptic Homeostasis and Restructuring across the Sleep-Wake Cyclept_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
SidartaRibeiro_ICE_Synaptic_Homeostasis_2015.pdf
Tamanho:
9.37 MB
Formato:
Adobe Portable Document Format
Descrição:
Artigo completo
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.53 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar