Determination of film thickness through simulation of vickers hardness testing
dc.contributor.author | Libório, Maxwell Santana | |
dc.contributor.author | Dias, Avelino Manuel da Silva | |
dc.contributor.author | Souza, Roberto Martins | |
dc.date.accessioned | 2021-12-17T12:03:12Z | |
dc.date.available | 2021-12-17T12:03:12Z | |
dc.date.issued | 2017-05 | |
dc.description.abstract | In recent decades, changes in the surface properties of materials have been used to improve their tribology characteristics. However, this improvement depends on the process, treatment time and, essentially, the thickness of this surface film layer. Physical vapor deposition (PVD) has been used to increase the surface hardness of metallic materials. The aim of the present study was to propose a numerical-experimental method to assess the thickness (l) of films deposited by PVD. To reach this objective, Vickers experimental hardness data (HV) assays were combined with numerical simulation to study the behavior of this property as a function of maximum penetration depth of the indenter (hmax) into the film/substrate conjugate. A strategy was developed to combine the numerical results of the H x hmax/l curve with Vickers experimental hardness data (HV). This methodology was applied to a TiN-coated M2 tool steel conjugate. The mechanical properties of the studied materials were also determined. The thickness results calculated for this conjugate were compatible with their experimental data. | pt_BR |
dc.description.resumo | In recent decades, changes in the surface properties of materials have been used to improve their tribology characteristics. However, this improvement depends on the process, treatment time and, essentially, the thickness of this surface film layer. Physical vapor deposition (PVD) has been used to increase the surface hardness of metallic materials. The aim of the present study was to propose a numerical-experimental method to assess the thickness (l) of films deposited by PVD. To reach this objective, Vickers experimental hardness data (HV) assays were combined with numerical simulation to study the behavior of this property as a function of maximum penetration depth of the indenter (hmax) into the film/substrate conjugate. A strategy was developed to combine the numerical results of the H x hmax/l curve with Vickers experimental hardness data (HV). This methodology was applied to a TiN-coated M2 tool steel conjugate. The mechanical properties of the studied materials were also determined. The thickness results calculated for this conjugate were compatible with their experimental data. | pt_BR |
dc.identifier.citation | LIBÓRIO, Maxwell Santana; DIAS, Avelino Manuel da Silva; SOUZA, Roberto Martins. Determination of film thickness through simulation of vickers hardness testing. Materials Research, [S.l.], v. 20, n. 3, p. 755-760, 13 abr. 2017. FapUNIFESP (SciELO). Disponível em: https://www.scielo.br/scielo.php?script=sci_abstract&pid=S1516-14392017000300755&lng=es&nrm=iso&tlng=en. Acesso em: 28 set. 2021. DOI: http://dx.doi.org/10.1590/1980-5373-mr-2015-0783 | pt_BR |
dc.identifier.doi | http://dx.doi.org/10.1590/1980-5373-mr-2015-0783 | |
dc.identifier.issn | 1516-1439 | |
dc.identifier.issn | 1980-5373 | |
dc.identifier.uri | https://repositorio.ufrn.br/handle/123456789/45443 | |
dc.language | en | pt_BR |
dc.publisher | Materials Research | pt_BR |
dc.rights | Attribution 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/br/ | * |
dc.subject | thin films | pt_BR |
dc.subject | finite element | pt_BR |
dc.subject | vickers hardness | pt_BR |
dc.subject | thickness measurement | pt_BR |
dc.title | Determination of film thickness through simulation of vickers hardness testing | pt_BR |
dc.type | article | pt_BR |
Arquivos
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- DeterminationFilmThickness_DIAS_2017.pdf
- Tamanho:
- 835.09 KB
- Formato:
- Adobe Portable Document Format
Nenhuma Miniatura disponível
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.45 KB
- Formato:
- Item-specific license agreed upon to submission
Nenhuma Miniatura disponível