Navegando por Autor "Sirotin, Yevgeniy B."
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Artigo Rapid triggering of vocalizations following social interactions(2013-11) Assini, Robert; Sirotin, Yevgeniy B.; Laplagne, Diego AndrésSocial interactions are multifaceted, composed of interlinked sensorymotor behaviors. The individual significance of each of these correlated components cannot be established without observing the full behavior. Recently, Wesson [1] concluded that rats display their submissive status by lowering sniff rate following face-to-face encounters with a dominant conspecific. How rats can perceive such changes in sniff rate is unclear. We recorded sniffing and vocal production of rats during social interactions. Face-toface encounters with a dominant rat immediately elicited 22 kHz alarm calls in the submissive. The large drop in sniff rate observed in submissive rats was caused by the prolonged exhalations needed to produce these calls. We propose that, while submissive rats do lower sniffing rates around face-to-face encounters, dominant rats need not directly perceive this change, but may instead attend to the salient 22 kHz alarm calls.Artigo Rodent ultrasonic vocalizations are bound to active sniffing behavior(2014) Sirotin, Yevgeniy B.; Costa, Martín Elias; Laplagne, Diego AndrésDuring rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5–10 Hz). During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, “50 kHz”) were emitted within stretches of active sniffing (5–10 Hz) and were largely absent during periods of passive breathing (1–4 Hz). Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations.