Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Luis Claudio de Oliveira"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Artigo
    Zebrafish tracking using YOLOv2 and Kalman filter
    (Springer Science and Business Media LLC., 2021-02-05) Barreiros, Marta de Oliveira; Dantas, Diego de Oliveira; Silva, Luis Claudio de Oliveira; Ribeiro, Sidarta Tollendal Gomes; Barros Filho, Allan Kardec Duailibe
    Fish show rapid movements in various behavioral activities or associated with the presence of food. However, in periods of rapid movement, the rate at which occlusion occurs among the fish is quite high, causing inconsistency in the detection and tracking of fish, hindering the fish's identity and behavioral trajectory over a long period of time. Although some algorithms have been proposed to solve these problems, most of their applications were made in groups of fish that swim in shallow water and calm behavior, with few sudden movements. To solve these problems, a convolutional network of object recognition, YOLOv2, was used to delimit the region of the fish heads to optimize individual fish detection. In the tracking phase, the Kalman filter was used to estimate the best state of the fish's head position in each frame and, subsequently, the trajectories of each fish were connected among the frames. The results of the algorithm show adequate performances in the trajectories of groups of zebrafish that exhibited rapid movements
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM