Navegando por Autor "Pereira, A."
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Artigo Interaction between affordance and handedness recognition: a chronometric study(2015-02-13) Lameira, A.P.; Pereira, A.; Conde, E.; Gawryszewski, L.G.The visualization of tools and manipulable objects activates motor-related areas in the cortex, facilitating possible actions toward them. This pattern of activity may underlie the phenomenon of object affordance. Some cortical motor neurons are also covertly activated during the recognition of body parts such as hands. One hypothesis is that different subpopulations of motor neurons in the frontal cortex are activated in each motor program; for example, canonical neurons in the premotor cortex are responsible for the affordance of visual objects, while mirror neurons support motor imagery triggered during handedness recognition. However, the question remains whether these subpopulations work independently. This hypothesis can be tested with a manual reaction time (MRT) task with a priming paradigm to evaluate whether the view of a manipulable object interferes with the motor imagery of the subject's hand. The MRT provides a measure of the course of information processing in the brain and allows indirect evaluation of cognitive processes. Our results suggest that canonical and mirror neurons work together to create a motor plan involving hand movements to facilitate successful object manipulation.Artigo Morphometric analysis of feedforward pathways from the primary somatosensory area (S1) of rats(2016) de Sá, A.L.; Bahia, C.P.; Correa, V.C.; Dias, I.A.; Batista, C.; Gomes-Leal, W.; Pinho, A.L.S.; Houzel, J.C.; Picanço-Diniz, C.W.; Pereira, A.We used biotinylated dextran amine (BDA) to anterogradely label individual axons projecting from primary somatosensory cortex (S1) to four different cortical areas in rats. A major goal was to determine whether axon terminals in these target areas shared morphometric similarities based on the shape of individual terminal arbors and the density of two bouton types: en passant (Bp) and terminaux (Bt). Evidence from tridimensional reconstructions of isolated axon terminal fragments (n=111) did support a degree of morphological heterogeneity establishing two broad groups of axon terminals. Morphological parameters associated with the complexity of terminal arbors and the proportion of beaded Bp vs stalked Bt were found to differ significantly in these two groups following a discriminant function statistical analysis across axon fragments. Interestingly, both groups occurred in all four target areas, possibly consistent with a commonality of presynaptic processing of tactile information. These findings lay the ground for additional work aiming to investigate synaptic function at the single bouton level and see how this might be associated with emerging properties in postsynaptic targets.