Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Germano, Rafael Lucena"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    TCC
    Parallel Repairing 3D Fuzzy Images into Well-Composed Images
    (Universidade Federal do Rio Grande do Norte, 2018) Germano, Rafael Lucena; Carvanlho, Bruno Motta de; Gomes, Rafael Beserra; Santos, Selan Rodrigues dos
    This work presents a parallelized version in Compute Unified Device Architecture of the algorithm presented in (SIQUEIRA et al., 2008) for repairing images into well-composed ones, as well as a comparison between heuristics to obtain the well-composed image which minimizes the difference between the generated well-composed image and the original image. The algorithm is based on successively changing the points from one object to another until the image becomes well-composed. Well-composed images are images on which the intersection of the voxels of an object with its complement forms a topological surface. Such images enjoy very useful properties which reduce the processing time of algorithms, such as thinning and surface extraction algorithms. Lastly, the performance of the parallel and sequential versions are compared and an analysis of the produced well-composed images is done.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM