Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Freitas, Vitor Yeso Fidelis"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    TCC
    Plataforma automática para compressão consciente de modelos de aprendizagem profunda baseada em poda seguida de quantização
    (Universidade Federal do Rio Grande do Norte, 2025-01-20) Freitas, Vitor Yeso Fidelis; Fernandes, Marcelo Augusto Costa; http://lattes.cnpq.br/3475337353676349; https://orcid.org/0009-0002-7626-5622; http://lattes.cnpq.br/4994486202506393; Balza, Micael; http://lattes.cnpq.br/0303807807288761; Silva, Alessandro Soares; http://lattes.cnpq.br/6391394214446756
    O avanço das aplicações de aprendizado profundo tem impactado diversos setores, porém o tamanho e a complexidade dos modelos neurais apresentam desafios para implementação em sistemas com recursos computacionais limitados. Este trabalho apresenta uma plataforma automática que integra técnicas de poda seguida de quantização durante o processo de treinamento de redes neurais profundas, visando otimizar a acurácia e eficiência computacional dos modelos. Experimentos realizados com o conjunto de dados CIFAR-10 demonstraram a eficácia da abordagem, alcançando reduções de até 80% no tamanho da memória enquanto mantém níveis de acurácia compatíveis com o estado da arte, com perdas de 2-3%. Análises da distribuição dos pesos antes e após a compressão revelaram padrões de adaptação da rede durante o treinamento com compressão, fornecendo insights sobre o comportamento do modelo sob diferentes regimes de compressão.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM