Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Ferreira-Martins, André Juan"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Artigo
    Detecting quantum phase transitions in a frustrated spin chain via transfer learning of a quantum classifier algorithm
    (Physical Review A, 2024-05-20) Ferreira-Martins, André Juan; Silva, Leandro; Palhares Júnior, Alberto Bezerra de; Pereira, Rodrigo; Soares-Pinto, Diogo O.; Araújo, Rafael Chaves Souto; Canabarro, Askery
    The classification of phases and the detection of phase transitions are central and challenging tasks in diverse fields. Within physics, these rely on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how machine learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase). Employing supervised learning, we demonstrate the feasibility of transfer learning. Specifically, a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. We also compare the performance of common classical machine learning methods with a version of the quantum nearest neighbors (QNN) algorithm
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM