Navegando por Autor "Campos, Leila M. A."
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Artigo Assessment of Ag Nanoparticles Interaction over Low-Cost Mesoporous Silica in Deep Desulfurization of Diesel(MDPI AG, 2019-07-30) Bicudo, Tatiana de Campos; Sales, Rafael V.; Moura, Heloise O. M. A.; Câmara, Anne B. F.; Rodríguez-Castellón, Enrique; Silva, José A. B.; Pergher, Sibele B. C.; Campos, Leila M. A.; Urbina, Maritza M.; Carvalho, Luciene S. deChemical interactions between metal particles (Ag or Ni) dispersed in a low-cost MCM-41M produced from beach sand amorphous silica and sulfur compounds were evaluated in the deep adsorptive desulfurization process of real diesel fuel. N2 adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy (STEM-EDX) were used for characterizing the adsorbents. HRTEM and XPS confirmed the high dispersion of Ag nanoparticles on the MCM-41 surface, and its chemical interaction with support and sulfur compounds by diverse mechanisms such as π-complexation and oxidation. Thermodynamic tests indicated that the adsorption of sulfur compounds over Ag(I)/MCM-41M is an endothermic process under the studied conditions. The magnitude of DH◦ (42.1 kJ/mol) indicates that chemisorptive mechanisms govern the sulfur removal. The best fit of kinetic and equilibrium data to pseudo-second order (R2 > 0.99) and Langmuir models (R2 > 0.98), respectively, along with the results for intraparticle diffusion and Boyd’s film-diffusion kinetic models, suggest that the chemisorptive interaction between organosulfur compounds and Ag nanosites controls sulfur adsorption, as seen in the XPS results. Its adsorption capacity (qm = 31.25 mgS/g) was 10 times higher than that obtained for pure MCM-41M and double the qm for the Ag(I)/MCM-41C adsorbent from commercial silica. Saturated adsorbents presented a satisfactory regeneration rate after a total of five sulfur adsorption cycles