Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Andrés, Juan"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 4 de 4
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Artigo
    Connecting the surface structure, morphology and photocatalytic activity of Ag2O: An in depth and unified theoretical investigation
    (Elsevier, 2020-04-15) Ribeiro, Renan Augusto Pontes; Oliveira, Marisa Carvalho de; Delmonte, Maurício Roberto Bomio; Lazaro, Sérgio Ricardo de; Andrés, Juan; Silva, Elson Longo da
    The surface morphology of the materials is known to have significant influence on the overall photocatalytic performance. Therefore, identifying the corresponding electronic structures associated with the surface redox centers is essential for the rational design of Ag2O-based photocatalysts. In this study, comprehensive and sys- tematic theoretical calculations revealed the connection between electronic structure and morphology responsible for the photo-induced mechanism. First-principles calculations showed that the activity of Ag+ cations on the exposed surfaces is dependent of their local coordination and electronic configuration. Electrons were found to migrate to the energetically favorable (1 1 1) surface, while holes are concentrated in the more unstable (1 0 0) and (1 1 0) surfaces. The complete set of available morphologies was obtained, enabling us to rationalize the photocatalytic activity in terms of composition, geometry, and electronic structure of the exposed surfaces. Moreover, the localization and characterization of excited electronic states of both bulk material and exposed surfaces allow us to discuss the fundamental reactions involved in the photocatalytic mechanism underlying the morphological evolution and would promote significantly the development and application of singlet-triplet mechanism. The detailed insights provided by our work could benefit the design and preparation of new efficient photocatalysts based on Ag2O
  • Carregando...
    Imagem de Miniatura
    Artigo
    Experimental and theoretical study to explain the morphology of CaMoO4 crystals
    (Elsevier, 2018-03) Paskocimas, Carlos Alberto; Silva, Elson Longo da; Oliveira, Fernanda Karine Fonseca de; Oliveira, Marisa Carvalho de; Gracia, Lourdes; Tranquilin, Ricardo Luis; Motta, Fabiana Villela da; Andrés, Juan; Delmonte, Maurício Roberto Bomio
    CaMoO4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces of CaMoO4, and their morphological transformations were investigated through systematic first-principles calculations within the density functional theory method at the B3LYP level. Analysis of the surface structures showed that the electronic properties were associated with the presence of undercoordinated [CaOx] (x 1⁄4 5 and 6) and [MoOy] (y 1⁄4 4 and 3) clusters. The relative surfaces energies were tuned to predict a complete map of the morphologies available through a Wulff construction approach. The results reveal that the experimental and theoretical morphologies obtained coincide when the surface energies of the (001) and (101) surfaces increase, while the surface energy of the (100) facet decreases simultaneously. The results provide a comprehensive catalog of the morphologies most likely to be present under realistic conditions, and will serve as a starting point for future studies on the surface chemistry of CaMoO4 crystals
  • Carregando...
    Imagem de Miniatura
    Artigo
    Photoluminescent properties of ZrO2: Tm3+, Tb3+, Eu3+ powders — A combined experimental and theoretical study
    (Elsevier, 2017-02-25) Paskocimas, Carlos Alberto; Lovisa, Laura Ximena; Andrés, Juan; Gracia, Lourdes; Li, Maximo Siu; Delmonte, Maurício Roberto Bomio; Araújo, Vinícius Dantas; Silva, Elson Longo da; Motta, Fabiana Villela da
    Rare-earth (RE) element-based materials for optical applications have received increasing attention owing to the emission properties of RE ions, which render these materials suitable for use in color displays, lasers, and solid-state lighting. In the present work, ZrO2:RE (RE = Tm3+, Tb3+, and Eu3+) powders were obtained via complex polymerization, and characterized by means of X-ray diffraction (XRD), Raman spectroscopy, UV–visible absorption spectroscopy, and photoluminescence measurements. The XRD patterns and Raman spectra revealed the tetragonal phase of ZrO2 co-doped with up to 4 mol.% RE3+ and stabilization of the cubic phase, for up to 8 mol.% RE3+. In addition, the photoluminescence measurements revealed simultaneous emissions in the blue (477 nm), green (496.02 nm and 548.32 nm), and red-orange (597.16 nm and 617.54 nm) regions. These emissions result from the Tm3+, Tb 3+, and Eu3+ ions, respectively. Energy transfers, such as 1G4 levels (Tm3+) → 5D4 (Tb3+) and 5D4 levels (Tb3+) → 5D0 (Eu3+), occurred during the emission process. Calculations based on density functional theory (DFT) were performed, to complement the experimental data. The results revealed that structural order/disorder effects were generated in the cubic and tetragonal ZrO2 phases in the ZrO2:Eu3+ powders, and changes in the electronic structure were manifested as a decrease in the band gap values. The chromaticity coordinates of all the samples were determined from the PL spectrum. The coordinates, x = 0.34 and y = 0.34, of the ZrO2:8%RE sample corresponded to a point located in the white region of the CIE diagram and color correlated temperature (CCT) was found to be 5181 K. More importantly, the present results indicate that ZrO2:RE powders constitute promising photoluminescent materials for use in new lighting devices.
  • Nenhuma Miniatura disponível
    Artigo
    Structure, morphology and photoluminescence emissions of ZnMoO4: RE 3+=Tb3+ -Tm3+ - x Eu3+ (x = 1, 1.5, 2, 2.5 and 3 mol%) particles obtained by the sonochemical method
    (Elsevier, 2018-06-25) Lovisa, Laura Ximena; Oliveira, Marisa Carvalho de; Andrés, Juan; Gracia, Lourdes; Li, Maximo Siu; Silva, Elson Longo da; Tranquilin, Ricardo Luis; Paskocimas, Carlos Alberto; Delmonte, Maurício Roberto Bomio; Motta, Fabiana Villela da
    ZnMoO4 and ZnMoO4: RE3+= 1% Tb3+, 1% Tm3+, x Eu3+ (x = 1, 1.5, 2, 2.5 and 3 mol%) particles were prepared by a sonochemical method. The influence of the dopant content on photoluminescent behavior was investigated. The X-ray diffraction results confirmed the formation of the α-ZnMoO4 phase with a triclinic crystalline structure. The influence of the chemical compositions on photoluminescence emissions has been studied and the results clearly show the specific emissions of Tb3+ and Eu3+, simultaneously, with a strong contribution of the matrix. Band gap values are in the range of 3.55 to 4.25 eV. From the values calculated for the CIE coordinates, it was observed that this material develops an emission tendency in the orange-red region. It has been demonstrated for the first time that the sample ZnMoO4: 1% Tb3+, 1% Tm3+, 2% molEu3+, presented higher photoluminescence intensity. At higher concentrations of RE3+, the quenching effect was observed. The morphology of samples are interpreted based on a comparative analysis of the calculated and experimental field emission scanning electron microscopy (FE-SEM) images. First-principle calculations at a density functional theory level were performed to obtain the values of surface energies and relative stability of the (120), (001), (011), (201), and (100) surfaces by employing the Wulff construction.A complete map of the available morphologies of ZnMoO4 and ZnMoO4:12.5%molEu3+ is obtained and a possible explanation for the transformation processes is provided in which the experimental and theoretical morphologies can match. The present study offers a fundamental knowledge that is expected to enable the fabrication of ZnMoO4-based phosphor materials with a controllable emission peak shift and intensity
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM