Centro de Ciências Exatas e da Terra
URI Permanente desta comunidadehttps://repositorio.ufrn.br/handle/1/135
Navegar
Navegando Centro de Ciências Exatas e da Terra por Autor "Aigrain, S."
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Artigo Magnetic activity in the photosphere of CoRoT-Exo-2a: Active longitudes and short-term spot cycle in a young Sun-like star(Astronomy & Astrophysics, 2008) Lanza, A. F.; Pagano, I.; Leto, G.; Messina, S.; Aigrain, S.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Boumier, P.; Cameron, A. Collier; Comparato, M.; Cutispoto, G.; Medeiros, José Renan de; Foing, B.; Kaiser, A.; Moutou, C.; Parihar, P. S.; Silva-Valio, A.; Weiss, W. W.Context. The space experiment CoRoT has recently detected transits by a hot Jupiter across the disc of an active G7V star (CoRoTExo-2a) that can be considered as a good proxy for the Sun at an age of approximately 0.5 Gyr. Aims. We present a spot modelling of the optical variability of the star during 142 days of uninterrupted observations performed by CoRoT with unprecedented photometric precision. Methods. We apply spot modelling approaches previously tested in the case of the Sun by modelling total solar irradiance variations, a good proxy for the optical flux variations of the Sun as a star. The best results in terms of mapping of the surface brightness inhomogeneities are obtained by means of maximum entropy regularized models. To model the light curve of CoRoT-Exo-2a, we take into account the photometric effects of both cool spots and solar-like faculae, adopting solar analogy. Results. Two active longitudes initially on opposite hemispheres are found on the photosphere of CoRoT-Exo-2a with a rotation period of 4.522 ± 0.024 days. Their separation changes by ≈80◦ during the time span of the observations. From this variation, a relative amplitude of the surface differential rotation lower than ∼1 percent is estimated. Individual spots form within the active longitudes and show an angular velocity ∼1 percent lower than that of the longitude pattern. The total spotted area shows a cyclic oscillation with a period of 28.9 ± 4.3 days, which is close to 10 times the synodic period of the planet as seen by the rotating active longitudes. We discuss the effects of solar-like faculae on our models, finding indications of a facular contribution to the optical flux variations of CoRoT-Exo-2a being significantly smaller than in the present Sun. Conclusions. The implications of such results for the internal rotation of CoRoT-Exo-2a are discussed, based on solar analogy. A possible magnetic star-planet interaction is suggested by the cyclic variation of the spotted area. Alternatively, the 28.9-d cycle may be related to Rossby-type waves propagating in the subphotospheric layers of the star.Artigo Photospheric activity and rotation of the planet-hosting star CoRoT-4a(Astronomy & Astrophysics, 2009-10) Lanza, A. F.; Aigrain, S.; Messina, S.; Leto, G.; Pagano, I.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Cameron, A. Collier; Cutispoto, G.; Deleuil, M.; Medeiros, José Renan de; Foing, B.; Moutou, C.Aims. The space experiment CoRoT has recently detected a transiting hot Jupiter in orbit around a moderately active F-type mainsequence star (CoRoT-4a). This planetary system is of particular interest because it has an orbital period of 9.202 days, the second longest one among the transiting planets known to date. We study the surface rotation and the activity of the host star during an uninterrupted sequence of optical observations of 58 days. Methods. Our approach is based on a maximum entropy spot modelling technique extensively tested by modelling the variation in the total solar irradiance. It has been successfully applied to model the light curve of another active star with a transiting planet observed by CoRoT, i.e., CoRoT-2a. It assumes that stellar active regions consist of cool spots and bright faculae, analogous to sunspots and solar photospheric faculae, whose visibility is modulated by stellar rotation. Results. The modelling of the light curve of CoRoT-4a reveals three main active longitudes with lifetimes between ∼30 and ∼60 days that rotate quasi-synchronously with the orbital motion of the planet. The different rotation rates of the active longitudes are interpreted in terms of surface differential rotation, and a lower limit of 0.057 ± 0.015 is derived for its relative amplitude. The enhancement of activity observed close to the subplanetary longitude suggests a magnetic star-planet interaction, although the short duration of the time series prevents us from drawing definite conclusions. Conclusions. The present work confirms the quasi-synchronicity between stellar rotation and planetary orbital motion in the CoRoT4 system and provides a lower limit for the surface differential rotation of the star. This information can be important in trying to understand the formation and evolution of this highly interesting planetary system. Moreover, there is an indication of a possible star-planet magnetic interaction that needs to be confirmed by future studies.